60. Derivatives of (2R)-N-Glyoxylbornane-10,2-sultam and Their Use as Auxiliaries in the Diastereoselective Spirocyclization of 2-Substituted Tryptamines¹)

by Ralf Freund^a)^b), Christos Allagiannis^a), Peter Schönholzer^c), and Karl Bernauer^a)^c)²)*

^a) Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich
^b) Chemisches Institut der Tierärztlichen Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover
^c) Pharmaforschung der F. Hoffmann-La Roche AG, CH-4002 Basel

(22.XII.93)

A crude hydrate 6 and a crystalline hemiacetal 7 of glyoxylamide 4 were prepared from crotonamide 5 (*Scheme 2*). Particularly hemiacetal 7, but also 6 and the 'dimer' 8 (obtained from 7) may serve as homochiral auxiliaries. The structure of 8 was determined by X-ray analysis. By arenesulfonyl halides, tryptimines 12-14 of 4 were diastereoselectively transformed into spirotricycles 15-17 and 19.

1. Introduction. – Tryptimines of type 1 are transformed by various acid halogenides EX mainly into $(2'R^*, 3S^*)$ -tricycles of type 2 (*Scheme 1*) [1–3]. The remarkably high preference of this relative configuration prompted us to postulate a transition state of type 22/23 [2] (see below). Homochiral compounds 2 may be obtained, if R* is an appropriate homochiral auxiliary group. Of such groups, (–)-8-phenylmenth-3-yloxy (A), which was originally developed to steer *Diels-Alder*-type reactions [4], stood out for high directing ability [1] [2]. A mechanistic explanation of the observed absolute configuration appeared, however, questionable.

In recent years, the camphor-derived (2R)-bornane-10,2-sultam **B**-H (*Scheme 2*), introduced by *Oppolzer* and coworkers [5] as chiral auxiliary, was successfully applied in

¹) 7th Communication on 'Indoles, Indolenines, and Indolines'; 6th communication: [1].

²) Retired. Private address: Wartenbergstrasse 30, CH-4104 Oberwil.

various types of asymmetric reactions [6]. Concerning inducing power, **B** compares favourably with **A**. Because of its rigidity, it might facilitate mechanistic reasoning with regard to absolute product configuration.

Chapuis, Jurczak, and coworkers [7] synthesized the glyoxylamide **4** of **B**-H by ozonization of the fumaric-acid derivative **3** and studied its reaction with 1-methoxybuta-1,3-diene. We prepared independently on a similar route the (crude) hydrate and a crystalline hemiacetal of **4** and applied them as auxiliaries in the synthesis of homochiral 3-spiroindole derivatives. A crystalline dimeric hydrate, obtained from the hemiacetal, may serve the same purpose. We report in the following on some of our pertinent results.

2. Auxiliaries. – Ozonization of crotonamide 5 [8] in $CH_2Cl_2/MeOH$ at -78° , subsequent reduction of the ozonide with Me₂S, and aqueous workup afforded hydrate 6 as a partially crystallized solid which, however, could not be recrystallized and, therefore, was used as crude product. If, on the other hand, the aqueous workup was omitted after the reduction and the mixture instead partially evaporated and treated with Et₂O, the crystalline hemiacetal 7 was obtained in 90% yield (*Scheme 2*). Its structure follows mainly from ¹H-NMR data (MeO of 7 at 3.44 ppm (CDCl₃), of added MeOH at 3.40 ppm). Compound 7 is stable, if kept in the ice box. It cannot be dried without decomposition under reduced pressure and/or at temperatures essentially higher than room temperature.

Attempts to recrystallize 6 from CH_2Cl_2/Et_2O afforded compound 8, a derivative of 2,2'-oxybis(2-hydroxyacetic acid). Its structure was established by X-ray analysis (*Chapt.6, Fig.3*). Closely related structures were described before [9].

3. Tryptimines of 4 and Spirocyclization. – From amine 9 [3] and crude 6, tryptimine 12 was formed in CH_2Cl_2 in the presence of molecular sieves and cyclized by TsCl *in situ* at $-20^{\circ 3}$) after addition of 2,4,6-trimethylpyridine to (2'S,3R)-tricycle 15 (25.2%), a diastereoisomer was not observed.

³) Spirocyclization of tryptimines of 4 at -78° (cf. [1] [2]) is an extremely slow reaction.

The auxiliary 7 was reacted with the amines 10 [10] [11] and 11 [11] to the imines 13 and 14, respectively, under the conditions mentioned for 12, and the imines were cyclized *in situ*, *i.e.* without removing the MeOH which is released from 7. From 13 and TsCl at -21° , the (2'R,3S)-tricycle 16 was obtained as main product (53%; 66% de), and from 13 and 4-methoxy-2,3,6-trimethylbenzenesulfonyl chloride (18), after 92 h at -21° , the analogous compound 17 (7.5%; 94.5% de). Reaction at 20° for 115 h gave a 39% yield of 17, but with a de of only 81%. Imine 14 was transformed by arenesulfonyl chloride 18 at -10° into a 4:3 mixture of the two diastereoisomeric (2'R,3S)-tricycles 19a and 19b (together 58%), besides very small ammounts of unidentified isomers. Chromatography (silica gel) allowed a partial separation of the main components, which, however, could not be isolated in pure form.

In a preliminary experiment, compound 8 was reacted in $CHCl_3$ at room temperature with amine 10 in the presence of molecular sieves. The resulting imine afforded, with arenesulfonyl chloride 18 (CHCl₃, 2,4,6-trimethylpyridine, 96 h, room temperature), 17. This means that also 8 could serve as homochiral auxiliary.

4. Structure of the Cyclization Products. – The UV-, IR-, and 'H-NMR spectra of the cyclization products are in agreement with the given structures (see *Exper. Part*).

The (3R)-configuration of **15** follows from CD comparison with compound **20** [2] (pos. maxima at 366, 276, and 211 nm, neg. maxima at 329 and 234 nm). The (S)-configuration at C(2') (analogous to **20**) is not strictly proved. The CD spectra of the 2-methyl compounds **16** and **17** correspond to that of **21** [2], establishing the (2'R,3S)-configuration for both.

The two tricycles obtained from 14 and 18 must be the (E)- and (Z)-isomers 19a and 19b, respectively⁴), for the following reasons: CD comparison of the mixture with (-)-tabersonine⁵) points to (3S)-configuration for both components. On refluxing of the mixture with HCl/H₂O/EtOH, the 2-methyl compound 17 (41.5%) was formed (besides *ca.* 45% of the sultam **B**-H) as the only spirotricyclic product. Furthermore, we could show that a 1.9:1 mixture of the components (chromatographic top fraction), on treatment with AcOH/CF₃COOH for 230 h, was transformed in a 1:2.6 mixture. It is reasonable to attribute structure 19a to the component enriched in the top fraction (lower polarity due to H-bond formation: N(1)-H···O=C-O(i-Pr)).

5. Discussion. – The above presented results show that the easily prepared hemiacetal 7 is a useful equivalent of aldehyde 4 if tryptimines of the latter are to be formed. The tricycles obtained as main products from these imines possess $(2'R^*, 3S^*)$ -configuration. Taking into account the analogous steric outcome in formerly discussed cases [1] [2], it can be concluded that the previously formulated transition state of type 22/23 (Scheme 3) explains correctly the relative steric course of the main reaction.

As to the tryptimine 14, it is of interest that - in contrast to the corresponding (-)-8-phenylmenth-3-yl derivative⁶) $-(2'R^*, 3R^*)$ -tricycles are not formed (at least not to an extent which would allow isolation and identification). (E,Z)-Isomerisation and/or cyclization of the (Z)-isomer must be relatively slow in this case.

Apart from that, the residue **B** is, with respect to absolute configuration and enantiomeric excess, comparable to the 8-phenylmenthyloxy group **A**. A drawback is, however, the relatively low reaction rate.

Attempts to explain the observed *absolute* steric courses of the reactions $12 \rightarrow 15$ and $13 \rightarrow 16$ by means of *Dreiding* models remained unsuccessful, in spite of the fact that **B** possesses much less degrees of freedom than A^6). The model inspection allows, however, to preclude a purely steric explanation of the remarkable fact that identical groups R^* steer the reaction in the 2-methyl and the 2-(3,4-dimethoxyphenyl) series to inversely configurated spirotricycles: In neither of the two series, the 2-substituent interferes sterically with any other part of the corresponding molecule (*cf.* 22/23, *Scheme 3*). It appears, however, plausible that the transition state in the former (22) is educt-like,

⁽E/Z)-Equilibria were observed also with comparable simpler indole derivatives [12].

⁵) Cf. Fig. 3 in [2].

⁶) Cf. Discussion in [2].

whereas it is product-like in the latter (23) because of the strong electron-donating character of 3,4-dimethoxyphenyl, which effects a relatively high electron density at C(3) of the indole moiety. This difference may be the reason for the stereochemical divergence.

6. X-Ray Structure Analysis. – The stereoscopic drawing of the structure of **8** is given in the *Figure*⁷).

Figure. Stereoscopic drawing of 8

Data were collected on a Nicolet-R3m four-circle diffractometer fitted with a LT1 cooling apparatus. Temp. 190 K; wavelength 0.71069 Å; scan mode $\theta/2\theta$; scan speed 0.52°/min minimum speed; strong reflections measured up to 14.65°/min; scan width 1.0°; 2θ range, θ -56 peak to background ratio 5:1; total data measured 1809 excluding standards; total observed 1568; rejection criterion $I > 2.5\sigma(I)$; number of parameters 191; weights $w = 1/\sigma^2(F) + 0.001|F|^2$. The structure was determined by direct methods using the SHELXTL PLUS (VAX II) system. The refinement converged at R = 0.065 with anisotropic refinement of all non-H-atoms. Space group: orthorhombic, $P2_12_12$; cell dimensions: a = 7.028(3), b = 20.544(6), c = 8.845(3) Å; D = 1.453 Mg/m³, Z = 2; μ (MoK_x) = 0.253 mm⁻¹.

This work was supported by the Swiss National Science Foundation and by F. Hoffmann-La Roche AG, Basel. The authors thank Drs. W. Arnold, G. Englert, M. Grosjean, K. Noak, W. Vetter, Mrs. J. Kohler, and Mr. W. Meister, F. Hoffmann-La Roche AG, Drs. R. Hollenstein, A. Lorenzi-Riatsch, U. Piantini, Mr. N. Bild, H. Frohofer, M. Vöhler, and Mrs. Patterson-Vykoukal, Universität Zürich, as well as Mrs. Ch. Bartetzko, Mr. R. Jenken, and R. Nöthel, Universität Hannover, Miss M. Baumgarten and Mrs. J. Bokämper, Tierärztliche Hochschule Hannover, for spectroscopic determinations and elemental analyses, Dr. H. Gutmann for advice concerning nomenclature, and Miss S. Michal for experimental assistance.

Experimental Part

General. See [11] [2].

1. (3aS,6R,7aR)-1-(Dihydroxyacetyl)-hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (6). A soln. of 5 [13] (1.98 g, 7 mmol) in CH₂Cl₂ (20 ml) and MeOH (15 ml) was ozonized at -78°. After removal of excess O₃ by flushing with N₂, Me₂S (0.77 ml, 10.5 mmol) was added and the mixture kept at -78° overnight and then evaporated at r.t. The soln. of the residue in CH₂Cl₂ (25 ml) was washed with brine (4 × 5 ml), dried with molecular sieves, and evaporated. The residue (1.77 g; colourless, partially crystalline solid) contained ca. 40% of 6 besides structurally related unknown compounds. ¹H-NMR (250 MHz, (D₆)DMSO, characteristic signals of 6 only): 0.94 (s, Me); 1.04 (s, Me); 1.18-1.34 (m); 1.40-1.58 (m); 1.68-2.08 (m); 3.66 (d, J = 15); 3.86 (d, J = 15); 3.95 (dd, J = 12.5, 5); 4.63 (br. s).

⁷) Coordinates and geometrical data were deposited with the *Cambridge Crystallographic Data Centre*, University Chemical Lab, Cambridge CB2 1EZ, UK.

2. $(3a S_{1}6 R_{7}a R)$ -Hexahydro-1- $[(\zeta)-(hydroxy)(methoxy)acetyl]$ -8,8-dimethyl-3 H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (7). As described for **6**, with **5**[13] (6.44 g, 22.7 mmol), CH₂Cl₂ (54 ml), MeOH (34 ml), and Me₂S (8.3 ml, 113.2 mmol; -20° instead of -78°). MgSO₄ was added, the mixture warmed to r.t., filtered, and evaporated. From a soln. of the residue in CH₂Cl₂ (*ca.* 10 ml) and Et₂O (*ca.* 25 ml) at 4°, 7 (3.99 g) crystallized as colourless needles which were washed with Et₂O and dried at r.t. After addition of MeOH (10 ml), the mother liquor was poured into H₂O (100 ml). The mixture was extracted with CH₂Cl₂ (2 × 50 ml) and Et₂O (50 ml) and the combined org. phase partially evaporated. On treatment with Et₂O, a further crop of **7** (2.21 g) crystallized. Total yield 6.2 g (89.9%). M.p. 170° (dec.). IR (CHCl₃): 1699, 1345, 1312, 1299, 1291, 1154, 1141, 1098, 1066. ¹H-NMR (200 MHz, CDCl₃): 0.92 (s, 3 H); 1.10 (s, 3 H); 1.18-1.42 (m, 2 H); 1.78-2.16 (m, 5 H); 3.34-3.48 (m, 2 H); 3.44 (s, 3 H); 3.86 (dd, J = 7.7, 5.1, 1 H); 5.23 (d, J = 10, 1 H); on addition of MeOH, its Me signal appears at 3.40 and the d at 5.23 is transformed into a sharp s. CI-MS: 320 (15), 304 (7, $[M + 1]^+$), 286 (21), 272 (100), 135 (46). HR-MS: 272.0966 (C₁₂H₁₈NO₄S⁺, $[M - OMe]^+$, calc. 272.0957).

3. 1,1'-[Oxybis[(S)-2-hydroxy-1-oxoethane-2,1-diyl]bis[(3aS,6R,7aR)-hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole] 2,2,2',2'-Tetraoxide (8). To a soln. of 7 (179 mg, 0.59 mmol) in CH₂Cl₂ (*ca.*5 ml), Et₂O (5 ml) was added. After 10 days at 4°, pure 8 (26.5 mg, 16%) was isolated by filtration. M.p. 183° (dec.). IR (KBr): 3486, 2961, 1702, 1457, 1413, 1395, 1341, 1242, 1170, 1142, 1115, 1065, 1035, 847, 826, 770, 616, 535, 490. ¹H-NMR (300 MHz, (D₆)DMSO): 0.92 (*s*, 6 H); 1.05 (*s*, 6 H); 1.28–1.35 (*m*, 2 H); 1.43–1.51 (*m*, 2 H); 1.70–1.87 (*m*, 6 H); 2.00–2.15 (*m*, 4 H); 3.58 (*d*,*J*= 14.1, 2 H); 3.77 (*d*,*J*= 14.1, 2 H); 3.97 (*dd*,*J*= 4.5, 4.5, 2 H); 5.40 (*d*,*J*= 9, 2 H); 7.31 (*d*,*J*= 9, 2 H). MS: 272 (3), 242 (16), 136 (16), 135 (100), 132 (10), 107 (32).

4. $(3aS, 6R, 7aR) - 1 - \{\{(2'S, 3R) - 2 - (3, 4 - Dimethoxyphenyl) - 1' - (4 - tolylsulfonyl)spiro[3H-indole - 3, 3' - pyrrolidin] - 2' - yl \} carbonyl \}$ -hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (15). A mixture of crude 6 (320 mg, 1.1 mmol), CH₂Cl₂ (5 ml), and molecular sieves was stirred at r.t. overnight. Then, a soln. of 9 (1 mmol) in CH₂Cl₂ (10 ml) was added dropwise at 0° within 1 h. After additional 2 h at 0° and 2 h at r.t., the soln. was separated from the molecular sieves and cooled to -20° . First 2,4,6-trimethylpyridine (0.2 ml) and then a soln. of TsCl (198.9 mg, 1.04 mmol) in CH₂Cl₂ (3 ml) were added by syringe. After stirring at -20° for 24 h, the mixture was shaken with 2N Na₂CO₃ (5 ml), the aq. phase extracted twice CH₂Cl₂, the combined org. layer washed with 0.5m citric acid and evaporated, and the residue chromatographed (hexane/CHCl₃/AcOEt 2:2:1, silica gel (80 g)): 15 (179.6 mg, 25.2%). Colorless foam. UV (MeOH): 230 (4.43), 336 (4.13). CD (EtOH, 1.0 mM): 366 (1.44), 329 (-1.26), 276 (1.34), 234 (-14.5), 211 (20.95). ¹H-NMR (CDCl₃, 250 MHz): 0.07 (s, 3 H); 0.72 (s, 3 H); 1.03-1.38 (m, 4 H); 1.64-1.80 (m, 3 H); 1.90-2.03 (m, 1 H); 2.50 (s, 3 H); 2.62-2.79 (m, 1 H); 3.16 (d, J = 14, 1 H); 3.27 (d, J = 14, 1 H); 3.67 (dd, J = 8, 4, 1 H); 3.92 (s, 3 H); 4.01 (s, 3 H); 4.04-4.20 (m, 2 H); 5.71 (s, 1 H); 6.53 (d, J = 10, 1 arom. H); 7.08-7.93 (m, ca. 10 arom. H).

5. (3aS,6R,7aR)-Hexahydro-8,8-dimethyl-1-{{(2'R,3S)-2-methyl-1'-(4-tolylsulfonyl)spiro[3 H-indole-3,3'pyrrolidin]-2'-yl}carbonyl}-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (16). To a stirred mixture of 7 (334 mg, 1.1 mmol), CH₂Cl₂ (14 ml), and molecular sieves at -78° , a soln. of crude 10 [11] (198 mg, 1.14 mmol) in CH₂Cl₂ (15 ml) was added by syringe. After 14 h at -5° , the mixture was cooled to -78° . A soln. of TsCl (315 mg, 1.65 mmol) and 2,4,6-trimethylpyridine (0.44 ml, 3.32 mmol) in CH₂Cl₂ (1.4 ml) was added dropwise. The mixture was stirred at -21° for 70 h and then poured on 0.5M aq. citric acid (40 ml). The aq. phase was extracted with CH₂Cl₂ (2 × 40 ml), the combined org. layer evaporated, and the residue submitted to FC (silica gel, Et₂O/CH₂Cl₂ 7:1): colorless foam (339 mg, 53%), consisting of 16 and a diastereoisomer (66.2% de). On twofold crystallisation from CH₂Cl₂/Et₂O, a mixture of 16 and its diastereoisomer (73.5% de) was obtained. M.p. 137° (dec.). UV (EtOH): 201.7 (4.49), 215 (4.40), 221 (4.42), 227 (sh, 4.39), 263 (sh, 3.64). CD (EtOH, 2.1 mM): 264 (-6.45), 251 (0.60), 227 (-74.19), 207 (66.51). IR (CHCl₃): 1710, 1593, 1582, 1508, 1340, 1274, 1168, 1138. ¹H-NMR (200 MHz, CDCl₃): 0.13 (s, 3 H); 0.75 (s, 3 H); 0.88-1.74 (m, ca. 7 H); 1.77 (s, 0.6 H); 1.83 (s, 2.4 H); 1.86-2.19 (m, ca. 2 H); 2.42 (s, 0.6 H); 2.47 (s, 2.4 H); 3.22 (d, J = 14, 1 H); 3.33 (d, J = 14, 1 H); 3.76-3.85 (m, ca. 2 H); 3.9-4.1 (m, 1H); 4.49 (s, ca. 0.2 H); 5.02 (s, ca. 0.8 H); 7.05-7.75 (m, ca. 6 arom. H); 7.97 (d, J = 8.2, 2 arom. H). MS: 581 (8, M⁺), 431 (10), 426 (14), 339 (57), 183 (100). HR-MS: 581.2023 (C₃₀H₃₅N₃O₅S⁺, calc. 581.2018).

6. (3aS,6R,7aR)-Hexahydro-1-{{(2'R,3S)-1'-(4-methoxy-2,3,6-trimethylphenylsulfonyl)-2-methylspiro[3Hindole-3,3'-pyrrolidin]-2'-yl}carbonyl}-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (17). To a stirred mixture of 10 [11] (555 mg, 3.2 mmol), CH₂Cl₂ (42 ml), and molecular sieves at -78°, a soln. of 7 (938 mg, 3.1 mmol) in CH₂Cl₂ (39 ml) was added by syringe. After 15 h at -5°, the mixture was cooled to -78°. Then, a soln. of 4-methoxy-2,3,6-trimethylbenzenesulfonyl chloride (18; 884 mg, 3.6 mmol) and 2,4,6-trimethylpyridine (1 ml, 7.5 mmol) in CH₂Cl₂ (3 ml) was added dropwise. After further stirring at -21° for 92 h, the mixture was poured on 0.5M aq. citric acid (80 ml). The aq. phase was extracted with CH₂Cl₂ (2 × 80 ml), the combined org. layer evaporated, and the residue submitted to FC (silica gel, Et₂O/petroleum ether (low boiling) 10:1, then Et₂O): 17 as colourless foam (149 mg, 8%; 94.5% de). CD (EtOH, 1.68 mM): 264 (-3.99), 240 (5.55), 220 (-6.94), 207 (23.16). IR (CHCl₃): 1700, 1585, 1562, 1468, 1378, 1345, 1310, 1274, 1180, 1142. ¹H-NMR (200 MHz, CDCl₃): 0.06 (*s*, 3 H); 0.71 (*s*, 3 H); 1.05–1.30 (*m*, 2 H); 1.51 (*s*, 1 H); 1.60–1.84 (*m*, ca. 3 H); 2.17 (*s*, 3 H); 2.35–2.75 (*m*, 2 H); 2.55 (*s*, 3 H); 2.66 (*s*, 3 H); 2.75 (*s*, 3 H); 3.13–3.27 (*m*, 2 H); 3.47–3.57 (*m*, 1 H); 3.64–3.80 (*m*, 1 H); 3.86 (*s*, 3 H); 3.93–4.04 (*m*, 2 H); 5.59 (*s*, 1 H); 6.59 (*s*, 1 arom. H); 7.05–7.50 (*m*, ca. 4 arom. H). MS: 639 (2.8, M^{++}), 426 (11.6), 397 (100), 213 (92), 157 (49), 149 (100), 134 (41), 119 (68). Anal. calc. for C₃₃H₄₁N₃O₆S₂ (639.83): C 61.95, H 6.49, N 6.57; found: C 61.62, H 6.46, N 6.65.

7. 1-Methylethyl {(2'R,3S,2Z)-2'-{[(3aS,6R,7aR)-Hexahydro-8,8-dimethyl-2,2-dioxo-3H-3a,6-methano- $2\lambda^{6}$, *l-benzisothiazol-1-yl]carbonyl*-*l'-(4-methoxy-2,3,6-trimethylphenylsulfonyl)spiro(3*H-indole-3, 3'-pyrrolidin)-2(1H)-ylidene {acetate (19a) and (2'R,3S,2E)-Isomer 19b. To a stirred soln. of 7 (612 mg, 2.02 mmol) in CH₂Cl₂ (5 ml) at -10°, a soln. of freshly prepared 11 [11] (525.9 mg, 2.02 mmol) in CH₂Cl₂ (5 ml) was added by syringe (infusion pump) within 35 min. The syringe was flushed twice with CH₂Cl₂ (2.5 ml). After 18 h, the mixture was cooled to -78°. A mixture of CH₂Cl₂ (4 ml), 18 (611.3 mg, 2.5 mmol), and 2,4,6-trimethylpyridine (0.4 ml) was added dropwise by syringe. After warming to -10° , stirring was continued for 120 h. Then, the mixture was treated with 0.5N aq. citric acid (5 ml) and warmed to r.t. The aq. phase was extracted with CH₂Cl₂ (5 ml), the combined org. layer evaporated, and the residue chromatographed (silica gel (100 g), Et₂O/hexane 3:1): 19a/19b (15 fractions, together 850.2 mg, 58%). Data of the combined fractions 6-12: CD (EtOH, 1.45 mM): 366 (-0.46), 328 (9.28), 317 (7.14), 305 (3.80), 296 (2.31), 282 (-0.78), 280 (-1.12), 269 (-2.66), 250 (2.14), 240 (4.94), 219 (-5.42), 207 (2.04). ¹H-NMR (400 MHz, CDCl₃, clearly separated signals only): 0.26 (s, 1.8 H); 0.77 (s, 1.8 H); 2.17 (s, 1.2 H); 2.18 (s, 1.8 H); 2.22–2.33 (m, 1 H); 2.36–2.49 (m, 1 H); 2.64 (s, 1.2 H); 2.67 (s, 1.8 H); 2.74 (s, 1.2 H); 2.76 (s, 1.8 H); 3.18–3.35 (m, 2 H); 3.60–3.85 (m, ca. 2 H); 3.87 (s, 3 H); 4.86 (s, 0.4 H); 4.95–5.00 (q, 0.4 H); 5.01–5.07 (q, 0.6 H); 5.08 (s, 0.6 H); 5.28 (s, 0.4 H); 5.39 (s, 0.6 H); 6.59 (s, 0.4 arom. H); 6.60 (s, 0.6 arom. H); 6.69-7.42 (ca. 4 arom. H); 9.80 (br. s, 0.4 H); 9.89 (br. s, 0.6 H). MS: 726 (19, $[M + 1]^+$), 725 (14, M^+), 512 (34), 484 (32), 483 (27), 339 (44), 270 (29), 184 (30), 183 (100). HR-MS: 725.2808 (C₃₇H₄₇N₃O₈S⁺₂, calc. 725.2805).

8. 17 from 19a/19b. A mixture of 19a/19b (50.8 mg, 0.07 mmol from the combined fractions 6-12), EtOH (10 ml), and 25% aq. HCl soln. (5 ml) was refluxed for 2 h and then evaporated. The residue was treated with 2N Na₂CO₃ (5 ml) and CH₂Cl₂ (5 ml), the aq. phase extracted with CH₂Cl₂ (2 × 5 ml), the combined org. layer evaporated, and the residue separated by prep. TLC (silica gel (5 mm; *Merck*), hexane/CHCl₃/AcOEt 3:4:1; removal of products with CH₂Cl₂/AcOEt): first B-H (6.5 mg, 45%), then 17 (17.8 mg, 41.5%), identical with 17 described above.

9. Acid-Catalyzed Equilibration of 19a/19b. A soln. of 19a/19b 1.9:1 (16 mg, 0.022 mmol) in AcOH (20 drops) and CF₃COOH (25 drops) was kept at r.t. for 230 h and then evaporated: 19a/19b 1:2.6 (by ¹H-NMR). ¹H-NMR (300 MHz, CDCl₃): 5.39 (H–C(2') of 19a); 5.28 (H–C(2') of 19b).

REFERENCES

- [1] R. Freund, S. Martinović, K. Bernauer, Helv. Chim. Acta 1992, 75, 282.
- [2] R. Freund, S. Mahboobi, K. Noack, P. Schönholzer, K. Bernauer, Helv. Chim. Acta 1990, 73, 439.
- [3] R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, Tetrahedron 1963, 19, 247.
- [4] E.J. Corey, H.E. Ensley, J. Am. Chem. Soc. 1975, 97, 6908.
- [5] W. Oppolzer, C. Chapuis, G. Bernardinelli, Helv. Chim. Acta 1984, 67, 1397.
- [6] W. Oppolzer, Tetrahedron 1987, 43, 1969.
- [7] T. Bauer, C. Chapuis, J. Kozak, J. Jurczak, *Helv. Chim. Acta* 1989, 72, 482; T. Bauer, J. Kozak, C. Chapuis, J. Jurczak, J. Chem. Soc., Chem. Commun. 1991, 1178.
- [8] M. Vandewalle, J. Van der Eycken, W. Oppolzer, C. Vulliod, Tetrahedron 1986, 42, 4035.
- [9] J. Gloede, W. Bürger, H. Gross, J. Prakt. Chem. 1969, 311, 497; V. Rautenstrauch, M. Joyeux, Angew. Chem. 1979, 91, 72; N.S. Nudelman, D. Pérez, J. Org. Chem. 1983, 48, 134; D. Pérez, N.S. Nudelman, J. Galloy, W. H. Watson, Acta Crystallogr., Sect. C. Cryst. Struct. Commun. 1983, 39, 393; D. Pérez, N.S. Nudelman, J. Org. Chem. 1988, 53, 1969.
- [10] A. H. Jackson, A. E. Smith, J. Chem. Soc. 1964, 5510.
- [11] S. Mahboobi, K. Bernauer, Helv. Chim. Acta 1988, 71, 2034.
- [12] A.S. Bailey, M.H. Vandrevala, J.V. Greenhill, Tetrahedron Lett. 1979, 45, 4407.
- [13] W. Oppolzer, J.-P. Barras, Helv. Chim. Acta 1987, 70, 1666.